Lidar Observations of the Fe Layer in the Mesopause and Lower Thermosphere over Beijing (40.5° N, 116.0° E) and Mohe (53.5° N, 122.4° E)

Author:

Wang Kexin12ORCID,Wang Zelong12,Wu Yuxuan12,Du Lifang2,Zheng Haoran2,Jiao Jing2,Wu Fang2ORCID,Xun Yuchang3ORCID,Xia Yuan4

Affiliation:

1. School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

3. College of Physics, Taiyuan University of Technology, Taiyuan 030024, China

4. School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China

Abstract

Lidar observations of metal layers play a significant role in research on the chemistry and dynamics of the mesosphere and lower thermosphere. This work reports on Fe lidar observations conducted in Beijing and Mohe. Utilizing the same laser emission system, a 1064 nm seed laser was injected into an Nd: YAG laser to generate a single longitudinal-mode pulse 532 nm laser, which pumped a dye laser to produce a 572 nm laser. The 572 nm laser and the remaining 1064 nm fundamental frequency laser passed through a sum–frequency module to generate a 372 nm laser to detect the Fe layer. According to a total of 52.6 h of observations for 10 nights in Beijing, the Fe layer has an average column density of 1.24 × 1010 cm−2, an RMS width of 4.4 km and a centroid altitude of 89.4 km. In Mohe, observed for 16 nights and a total of 91.5 h, the Fe layer has an average column density of 1.08 × 1010 cm−2, an RMS width of 4.6 km and a centroid altitude of 89.5 km. The probability of the occurrence of sporadic Fe layers was 42.4% in Beijing and 29.4% in Mohe. Compared to simultaneously observed Na layers, the occurrence probabilities of sporadic Fe layers were higher than those of sporadic Na layers in both stations. Based on the two cases observed in Beijing, it is conjectured that the formation mechanism of sporadic metal layers above approximately 100 km has a more significant influence on sporadic Fe layers than on sporadic Na layers. The lower thermospheric Fe layers with densities significantly larger than those of the main layer were observed during two nights in Mohe. This work contributes to the refinement of the global distribution of Fe layers and provides abundant observational data for the modeling and study of the metal layers.

Funder

Project of Collaborative Lidar Observation Experiment on Typical Stations

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3