Effects of Topography and Geography on Solar Diffuse Fraction Modeling in Taiwan

Author:

Lin Chun-Tin1,Chang Keh-Chin12ORCID

Affiliation:

1. Energy Research Center, National Cheng Kung University, Tainan 701, Taiwan

2. Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan

Abstract

A correlation model for the diffuse fraction was recently developed on the basis of a data set obtained in the western part of the Taiwanese mainland. However, it is widely agreed that no existing diffuse fraction correlation model is applicable to all geographical regions and climatic conditions, which is a viewpoint stated from a macro perspective. This study re-justifies this viewpoint through the consideration of a rather small geographical region: Taiwan. The topographic profile of the Taiwanese mainland primarily comprises the high-rise Central Mountain Ranges running from north–northeast to south–southwest, which separate the mainland into eastern and western parts. Furthermore, there are a number of small, remote islands around the Taiwanese mainland. The humidity over the sky dome of these small islands, carried from the moist sea (or ocean) air, is usually greater than that of the Taiwanese mainland. This results in different diffuse fraction patterns between these two geographical regions due to the climatic factor of atmospheric constituents. Two diffuse fraction correlation models for Taiwan were developed using in situ data sets for the eastern part of the Taiwanese mainland and an island in the Penghu archipelago, respectively. In particular, one case considered the topographic effect on modeling the diffuse fraction in Taiwan, while the other considered the geographical effect. Statistical assessments indicate that each correlation model developed in the present study performed better than the previous one developed using the in situ data set for the western part of the Taiwanese mainland, with both applied to the specific site where the data set was used for the model’s development. This work demonstrates the need to consider the effects of topography and geography when modeling the diffuse fraction in Taiwan.

Publisher

MDPI AG

Reference35 articles.

1. Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in Southern Norway: Interannual variability and the effect of clouds;Giesen;J. Geophys. Res.,2008

2. The concept of essential climate variables in support of climate research, applications, and policy;Bojinski;Bull. Am. Meteorol. Soc.,2014

3. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux;Asaf;Nat. Geosci.,2013

4. Donald, R. (1981). Solar Energy, Prentice-Hall.

5. Inference of climate sensitivity from analysis of earth’s energy budget;Forster;Annu. Rev. Earth Planet. Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3