Short-Term Probabilistic Wind Speed Predictions Integrating Multivariate Linear Regression and Generative Adversarial Network Methods

Author:

Dong Yingfei1,Li Chunguang2,Shi Hongke1,Zhou Pinhan2ORCID

Affiliation:

1. China Railway Seventh Group Company, Zhengzhou 450048, China

2. Key Laboratory of Safety Control of Bridge Engineering of the Ministry of Education, Changsha University of Science and Technology, Changsha 410076, China

Abstract

The precise forecasting of wind speeds is critical to lessen the harmful impacts of wind fluctuations on power networks and aid in merging wind energy into the grid system. However, prior research has predominantly focused on point forecasts, often overlooking the uncertainties inherent in the prediction accuracy. For this research, we suggest a new approach for forecasting wind speed intervals (PI). Specifically, the actual wind speed series are initially procured, and the complete ensemble empirical mode decomposition coupled with adaptive noise (CEEMDAN) method decomposes the actual wind speed series into constituent numerous mode functions. Furthermore, a generative adversarial network (GAN) is utilized to achieve the wind speed PI in conjunction with the multivariate linear regression method. To confirm the effectiveness of the suggested model, four datasets are selected. The validation results suggest that this suggested model attains a superior PI accuracy compared with those of numerous benchmark techniques. In the context of PI of dataset 4, the PINAW values show improvements of 68.06% and 32.35% over the CEEMDAN-CNN and VMD-GRU values in single-step forecasting, respectively. In conclusion, the proposed model excels over the counterpart models by exhibiting diminished a PINAW and CWC, while maintaining a similar PICP.

Funder

National Natural Science Foundation from China

Science and Technology Innovation Talent Project of Hunan Province

Key Laboratory of Safety Control of Bridge Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3