Affiliation:
1. Department of Applied and Nonlinear Optics, Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
Abstract
A couple of air quality (AQ) parameters were monitored with two types of low-cost sensors (LCSs) before, during and after the garden fence rebuilding of a dwelling house, located at the junction of a main road and a side street in a suburban area of Budapest, Hungary. The AQ variables, recorded concurrently indoors and outdoors, were particulate matter (PM1, PM2.5, PM10) and some gaseous trace pollutants, such as CO2, formaldehyde (HCHO) and volatile organic compounds (VOCs). Medium-size aerosol (PM2.5-1), coarse particulate (PM10-2.5) and indoor-to-outdoor (I/O) ratios were calculated. The I/O ratios showed that indoor fine and medium-size PM was mostly of outdoor origin; its increased levels were observed during the renovation. The related pollution events were characterized by peaks as high as 100, 95 and 37 µg/m3 for PM1, PM2.5-1 and PM10-2.5, respectively. Besides the renovation, some indoor sources (e.g., gas-stove cooking) also contributed to the in-house PM1, PM2.5-1 and PM10-2.5 levels, which peaked as high as 160, 255 and 220 µg/m3, respectively. In addition, these sources enhanced the indoor levels of CO2, HCHO and, rarely, VOCs. Increased and highly fluctuating VOC levels were observed in the outdoor air (average: 0.012 mg/m3), mainly due to the use of paints and thinners during the reconstruction, though the use of a nearby wood stove for heating was an occasional contributing factor. The acquired results show the influence of the fence renovation-related activities on the indoor air quality in terms of aerosols and gaseous components, though to a low extent. The utilization of high-resolution LCS-assisted monitoring of gases and PMx helped to reveal the changes in several AQ parameters and to assign some dominant emission sources.
Funder
Hungarian National Research Development and Innovation Fund