The Influence of Vegetation on Climate Elements in Northwestern China

Author:

Huang Bicheng1ORCID,Huang Yu1,Wu Dan1,Bao Xinyue2,Wu Yongping1ORCID,Feng Guolin13,Li Li4

Affiliation:

1. School of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China

2. College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. National Climate Center, Beijing 100081, China

4. School of Mathematics, Shanxi University, Taiyuan 038507, China

Abstract

Vegetation plays a crucial role in maintaining the balance between nature, water and soil resources. However, understanding its impact mechanisms in arid and semi-arid areas remains limited. This study aims to analyze the spatial–temporal characteristics of the vegetation leaf area index (LAI) and climate elements in typical regions of northwest China and the correlations between LAI and climate elements; it also aims to explore the influence of regional vegetation growth on climate change. The results reveal significant correlations between LAI and various climate elements. Specifically, within the same region, surface temperature, precipitation, vegetation transpiration, and total evaporation show positive correlations with the LAI, whereas surface albedo shows a negative correlation. Vegetation may affect climate through both heat and water exchange between the land and atmosphere. Increased vegetation leads to the enhanced absorption of solar radiation by the land surface, elevating surface temperature. Increased levels of vegetation also increase vegetation transpiration and total evaporation, increasing the water vapor content in the atmosphere and thus leading to increased surface precipitation. Therefore, vegetation distribution plays a role in climate change, and ecological restoration projects in the northwest region hold significant potential for addressing ecological challenges in its arid and semi-arid areas.

Funder

National Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3