Hourly Particulate Matter (PM10) Concentration Forecast in Germany Using Extreme Gradient Boosting

Author:

Wallek Stefan12ORCID,Langner Marcel12ORCID,Schubert Sebastian3ORCID,Franke Raphael4ORCID,Sauter Tobias2ORCID

Affiliation:

1. German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany

2. Geography Department, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

3. Urban Ecosystem Science, Institute of Ecology, Faculty VI—Planning Building Environment, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

4. School of Business and Economics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

Abstract

Air pollution remains a significant issue, particularly in urban areas. This study explored the prediction of hourly point-based PM10 concentrations using the XGBoost algorithm to assimilate them into a geostatistical land use regression model for spatially and temporally high-resolution prediction maps. The model configuration and training incorporated meteorological data, station metadata, and time variables based on statistical values and expert knowledge. Hourly measurements from approximately 400 stations from 2009 to 2017 were used for training. The selected model performed with a mean absolute error (MAE) of 6.88 μg m−3, root mean squared error (RMSE) of 9.95 μg m−3, and an R² of 0.65, with variations depending on the siting type and surrounding area. The model achieved a high accuracy of 98.54% and a precision of 73.96% in predicting exceedances of the current EU-limit value for the daily mean of 50 μg m−3. Despite identified limitations, the model can effectively predict hourly values for assimilation into a geostatistical land use regression model.

Publisher

MDPI AG

Reference31 articles.

1. World Health Organization (2024, February 07). Ambient (Outdoor) Air Quality and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.

2. European Environment Agency (2024, February 07). Harm to Human Health from Air Pollution. Available online: https://www.eea.europa.eu/ds_resolveuid/29d273f7a5ce447cbd588b300a8eab8d.

3. World Health Organization (2021). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, World Health Organization.

4. United Nations Economic Commission for Europe (2024, February 07). Convention on Long-Range Transboundary Air Pollution. Available online: https://unece.org/sites/default/files/2021-05/1979%20CLRTAP.e.pdf.

5. European Union (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union, 29, 169–212.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3