Characteristics of Soil Temperature Change in Lhasa in the Face of Climate Change

Author:

Jia Minghui123,Dai Changlei123,Yu Miao345,Yang Hongnan12,Li Ruotong123,Feng Xue123

Affiliation:

1. School of Hydraulic and Electric-Power, Heilongjiang University, Harbin 150080, China

2. Institute of Groundwater in Cold Regions, Heilongjiang University, Harbin 150080, China

3. International Joint Laboratory of Hydrology and Hydraulic Engineering in Cold Regions of Heilongjiang Province (International Cooperation), Harbin 150080, China

4. Melnikov Permafrost Institute of the Siberian Branch of the Russian Academy of Science, Yakutsk 677000, Russia

5. Faculty of Geology and Survey, North-Eastern Federal University, Yakutsk 677000, Russia

Abstract

Soil temperature is an important index of climate change, and the analysis of soil temperature change is of great significance for understanding climate change and ecohydrological processes. This study was based on the measured meteorological data of a meteorological station, combined with the soil temperature data of 0–10, 10–40, 40–100 and 100–200 cm from the Global Land Data Assimilation System (GLDAS-NOAH). The Mann–Kendall test, wavelet analysis, linear tendency estimation and other methods were used to analyze the variability, periodicity and trend of soil temperature in Lhasa from 2006 to 2022. The results showed that the soil temperature of different soil layers had abrupt changes in annual and seasonal time series, and all showed a warming phenomenon after abrupt changes. In terms of periodicity, the average annual soil temperature of different soil layers has similar periodic changes, and the periodic oscillation is strong around 10a, which is the main cycle of soil temperature change. The soil temperature in Lhasa showed a significant rising trend in the interannual and seasonal time series, and the average annual rising trend of soil temperature was greater than that of air temperature. The correlation between soil temperature and mean air temperature (MAT), maximum air temperature (Tmax), minimum air temperature (Tmin) and snow depth (SD) was investigated by Pearson correlation analysis. Soil temperature in spring, autumn and winter had a strong correlation with MAT, Tmax and Tmin, showing a significant positive correlation. The negative correlation between soil temperature and SD in 0–40 cm soil in spring and winter was more severe. The research results show that Lhasa has experienced a rise in air temperature and soil temperature in the past 17 years, and reveal the specific changes in soil temperature in Lhasa against the background of climate change. These findings have reference significance for understanding the impact of climate change on the natural environment.

Funder

Yunnan Provincial Key Laboratory of International Rivers and Transboundary Ecological Security Open Fund

Nanjing Hydraulic Research Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3