Long-Term and Seasonal Changes in Emission Sources of Atmospheric Particulate-Bound Pyrene and 1-Nitropyrene in Four Selected Cities in the Western Pacific

Author:

Hayakawa Kazuichi1

Affiliation:

1. Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa City 920-1192, Ishikawa, Japan

Abstract

Estimating the source contribution to polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) in the atmosphere is necessary for developing effective disease control and pollution control measures. The NPAH-PAH combination method (NP method) was used to elucidate the contributions of vehicles and coal/biomass combustion to seasonal and long-term urban atmospheric particulate matter (PM)-bound Pyr and 1-NP concentrations in Kanazawa, Kitakyushu, Shenyang and Shanghai in the Western Pacific region from 1997 to 2021. Among the four cities, Kanazawa demonstrated the lowest Pyr concentration. The contribution of vehicles to Pyr before and after 2010 was 35% and 5%, respectively. The 1-NP concentration was reduced by a factor of more than 1/10. These changes can be attributed to the emission control from vehicles. Kitakyushu revealed the second-lowest Pyr and the lowest 1-NP concentrations. Coal combustion was found to be the main contributor to Pyr, while its contribution to 1-NP increased from 9% to 19%. The large contribution of coal combustion is attributed to iron manufacturers. Shenyang demonstrated the highest atmospheric Pyr concentration with its largest seasonal change. Vehicles are the largest contributors to 1-NP. However, coal combustion, including winter coal heating, contributed 97% or more to Pyr and more than 14% to 1-NP. Shanghai revealed the second-highest Pyr and 1-NP concentrations, but the former was substantially lower than that in Shenyang. Coal combustion was the major contributor, but the contribution of vehicles to Pyr was larger before 2010, which was similar to Kanazawa.

Funder

Japan Automobile Research Institute

Publisher

MDPI AG

Reference37 articles.

1. World Health Organization (2024, April 02). Air Pollution and Child Health: Prescribing Clean Air. WHO Reference Number: WHO/CED/PHE/18.01.2018. Available online: https://who.int/bitstraam/handle/10665/275545/WHO-CED-PHE-18.1-erg.pdf.

2. International Agency for Research on Cancer (2014). IARC Monographs on the Evaluation on Carcinogenic Risks to Humans, International Agency for Research on Cancer.

3. Akimoto, H., and Tanimoto, H. (2022). Handbook of Air Quality and Climate Change, Springer. eBook.

4. Japan Society of Atmospheric Environment (2000). History of Atmospheric Pollution in Japan (Jpn: Nippon No Taikiosen No Rekishi), Kouken-Kyokai.

5. Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014;Hayakawa;Environ. Pollut.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3