Assessment and Prediction of Future Climate Change in the Kaidu River Basin of Xinjiang under Shared Socioeconomic Pathway Scenarios

Author:

Cao Chenglin1,Wang Yi1,Fan Lei1,Ding Junwei1,Chen Wen2

Affiliation:

1. School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China

2. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

Abstract

Xinjiang, located in the arid region of the northwest, is one of the areas most sensitive to global changes. The Kaidu River Basin, situated in the heart of Xinjiang, is one of the sources of China’s largest inland river—the Tarim River. The Kaidu River not only bears the responsibility for supplying water for industrial use and agricultural production and people’s daily life in the basin, but also plays a crucial role in ecological water supply to the Tarim River. Studying and analyzing the characteristics and trends of meteorological condition in the future under climate change can provide important references and a basis for a deeper understanding of changes in the hydrological process and water resources in the basin. Therefore, this paper selects seven precipitation bias correction methods and four temperature bias correction methods to adjust the precipitation and temperature output data of eight general circulation models of the Sixth Coupled Model Intercomparison Project (CMIP6) within the Kaidu River Basin. The applicability of different bias correction methods in the study area is evaluated, and based on the corrected future meteorological data and calculated extreme meteorological index, the trends of meteorological data (precipitation, temperature) in the future period (2025–2050) under four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) in the Kaidu River Basin are analyzed. The results show that: (1) Different types of bias correction methods have different correction focus and effects; their reflections on evaluation indicators are also different. (2) In the future period (2025–2050), the annual precipitation and average temperature in the Kaidu River Basin are higher than those in the historical period (1975–2014). The average annual temperature shows an upward trend in the future, but the annual precipitation shows a downward trend in the future except for the SSP2-4.5 scenario. (3) Compared with the historical period, the extreme precipitation in the future period under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios is higher than that in the historical period, and the number of rainless days decreases. In the future, under the SSP1-2.6 and SSP5-8.5 scenarios, the probability of meteorological drought events occurring due to high temperatures in the basin may further increase, while under the SSP2-4.5 scenario, the situation of high temperatures and heavy rain in the basin may continue to increase.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Jiangsu Natural Resources Development Special Fund for Marine Science and Technology Innovation

Jiangsu Province Natural resources Science and Technology Project

Guangdong Foundation for Program of Science and Technology Research

National Natural Science Foundation of China

National Key Research and Development Project

GDAS Special Project of Science and Technology Development

Publisher

MDPI AG

Reference56 articles.

1. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview;Wang;Adv. Clim. Chang. Res.,2017

2. Research advances in effects of climate change and human activities on hydrology;Dong;Adv. Water Sci.,2012

3. Risk assessment of water resource shortages in the Aksu River basin of northwest China under climate change;Yang;J. Environ. Manag.,2022

4. Interpretation of IPCC AR6: Climate change and water security;Liu;Clim. Chang. Res.,2022

5. Evaluation and projection of climate change in Jiangsu Province based on the CMIP5 multi-model ensemble mean datasets;Zhao;J. Meteorol. Sci.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3