Characterization of the Energy Balance of Wheat Grown under Irrigation in the Hot, Arid Environment of Sudan

Author:

Mohammed Almutaz Abdelkarim Abdelfattah123,Tsubo Mitsuru4,Kurosaki Yasunori4ORCID,Ibaraki Yasuomi5

Affiliation:

1. United Graduate School of Agricultural Science, Tottori University, Tottori 680-8553, Japan

2. Agricultural Research Corporation, P.O. Box 126, Wad Medani 22212, Sudan

3. Hydraulics Research Center, P.O. Box 318, Wad Medani 22212, Sudan

4. Arid Land Research Center, Tottori University, Tottori 680-0001, Japan

5. Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan

Abstract

An analysis of the crop microclimate is essential for assessing the climate’s appropriateness for cultivation. Here, the Bowen ratio (BR) was used to characterize the energy balance in an irrigated wheat field in a hot, arid environment in Sudan. The hourly BR was calculated using micrometeorological data, including net radiation (Rn) and soil heat flux (G), observed in the 2021–2022 and 2022–2023 growing seasons (December–March) and used to compute hourly daytime latent heat (LE) and sensible heat (H) fluxes during the days before and after irrigation. In both seasons, the observed significant evaporative cooling effect of irrigation led to a daily maximum temperature difference of 2.5–5.7 °C between the wheat field and a nearby meteorological station in a non-vegetated desert area. The energy balance calculation results showed that LE was dominant over H and G. Because BR tended to be negative, H was negative; thus, LE was larger than Rn because of sensible heat advection from the surrounding area. Further, a decrease in G after irrigation indicated an alteration in the soil’s thermal properties. These results provide insights into the micrometeorological response of irrigated wheat to a hot, arid environment and useful information for understanding soil–plant–atmosphere interactions in hot, dry environments.

Funder

Science and Technology Research Partnership for Sustainable Development, Japan Science and Technology Agency / Japan International Cooperation Agency

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3