A Comparative Cradle-to-Gate Life Cycle Study of Bio-Energy Feedstock from Camelina sativa, an Italian Case Study

Author:

Masella PiernicolaORCID,Galasso Incoronata

Abstract

Growing energy needs and medium-term weakening of fossil energy reserves are driving forces towards the exploitation of alternative and renewable energy sources, such as biofuels from energy crops. In recent years, Camelina sativa (L.) Crantz has been rediscovered and is gaining popularity worldwide. The present work reports the results of a study on the life cycle, from cradle-to-gate, of C. sativa oil as a raw material for the production of biofuels in northern Italy, considering two scenarios, namely, the production of biodiesel (BD) and the extraction of pure vegetable oil (PVO). The functional unit was 1 megajoule of biofuel. A life cycle impact assessment (LCIA) was calculated according to the ILCD2011 procedure. Focusing on the global warming potential, the PVO scenario performs better than the BD scenario, with around 30 g CO2eq MJ−1. The net energy ratio (NER) exceeds unity for BD (approximately 1.4) or PVO (approximately 2.5). The same general trend was recorded for all calculated LCIA indicators; the common evidence is a generalized worse performance of the BD scenario, with indicators always scoring higher than the PVO. In particular, the two human toxicity indicators—carcinogenic and fresh water—eutrophication represent a significant difference, attributable to the refining process. Uncertainty and sensitivity analyses, respectively, underline the generalized importance of agricultural performances in the field and of allocation choices. Specifically, the importance of the grain yield and seed oil content in determining the environmental performance of the two scenarios was evident. As far as allocation is concerned, mass allocation provides the most favorable results, while on the other hand, the expansion of the system was the most penalizing alternative.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3