Abstract
Scientific and accurate core competitiveness evaluation of clean energy incubators is of great significance for improving their burgeoning development. Hence, this paper proposes a hybrid model on the basis of matter-element extension integrated with TOPSIS and KPCA-NSGA-II-LSSVM. The core competitiveness evaluation index system of clean energy incubators is established from five aspects, namely strategic positioning ability, seed selection ability, intelligent transplantation ability, growth catalytic ability and service value-added ability. Then matter-element extension and TOPSIS based on entropy weight is applied to index weighting and comprehensive evaluation. For the purpose of feature dimension reduction, kernel principal component analysis (KPCA) is used to extract momentous information among variables as the input. The evaluation results can be obtained by least squares support vector machine (LSSVM) optimized by NSGA-II. The experiment study validates the precision and applicability of this novel approach, which is conducive to comprehensive evaluation of the core competitiveness for clean energy incubators and decision-making for more reasonable operation.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献