Adaptive Dual Aggregation Network with Normalizing Flows for Low-Light Image Enhancement

Author:

Wang Hua12ORCID,Cao Jianzhong1,Huang Jijiang1

Affiliation:

1. Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Low-light image enhancement (LLIE) aims to improve the visual quality of images taken under complex low-light conditions. Recent works focus on carefully designing Retinex-based methods or end-to-end networks based on deep learning for LLIE. However, these works usually utilize pixel-level error functions to optimize models and have difficulty effectively modeling the real visual errors between the enhanced images and the normally exposed images. In this paper, we propose an adaptive dual aggregation network with normalizing flows (ADANF) for LLIE. First, an adaptive dual aggregation encoder is built to fully explore the global properties and local details of the low-light images for extracting illumination-robust features. Next, a reversible normalizing flow decoder is utilized to model real visual errors between enhanced and normally exposed images by mapping images into underlying data distributions. Finally, to further improve the quality of the enhanced images, a gated multi-scale information transmitting module is leveraged to introduce the multi-scale information from the adaptive dual aggregation encoder into the normalizing flow decoder. Extensive experiments on paired and unpaired datasets have verified the effectiveness of the proposed ADANF.

Funder

National Science Basic Research Plan in Shannxi Province of 379 China

Publisher

MDPI AG

Reference67 articles.

1. Multi-Branch and Progressive Network for Low-Light Image Enhancement;Zhang;IEEE Trans. Image Process.,2023

2. Multiscale Low-Light Image Enhancement Network With Illumination Constraint;Fan;IEEE Trans. Circuits Syst. Video Technol.,2022

3. LIME: Low-Light Image Enhancement via Illumination Map Estimation;Guo;IEEE Trans. Image Process.,2017

4. Deep Feature Reconstruction Learning for Open-Set Classification of Remote-Sensing Imagery;Sun;IEEE Geosci. Remote Sens. Lett.,2023

5. Low-Light Image and Video Enhancement Using Deep Learning: A Survey;Li;IEEE Trans. Pattern Anal. Mach. Intell.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3