Periodic-Filtering Method for Low-SNR Vibration Radar Signal

Author:

Lin Yun1ORCID,Zhang Linghan1,Han Hongwei1,Li Yang1,Shen Wenjie1ORCID,Wang Yanping1

Affiliation:

1. Radar Monitoring Technology Laboratory, School of Information Science and Technology, North China University of Technology, Beijing 100144, China

Abstract

Radar is a non-contact, high-precision vibration measurement device and an important tool for bridge vibration monitoring. Vibration information needs to be extracted from the radar phase, but the radar phase information is sensitive to noise. Under low signal-to-noise ratio (SNR) data acquisition conditions, such as low radar transmission power or a long observation distance, differential phase jump errors occur and clutter estimation becomes difficult, which leads to inaccurate inversion of vibration deformation. Traditional low-pass filtering methods can filter out noise to improve SNR, but they require oversampling. The sampling rate needs to be several times higher than the Doppler bandwidth, which is several times higher than the vibration frequency. This puts high data acquisition requirements on radar systems and causes large data volumes. Therefore, this paper proposes a novel vibration signal filtering method called the periodic filtering method. The method uses the periodicity feature of vibration signals for filtering without oversampling. This paper derives the time-domain and frequency-domain expressions for the periodic filter and presents a deformation inversion process based on them. The process involves extracting the vibration frequency in the Doppler domain, suppressing noise through periodic filtering, estimating clutter using circle fitting on the data complex plane, and inverting final deformation with differential phase. The method is verified through simulation experiments, calibration experiments, and bridge vibration experiments. The results show that the new periodic filtering method can improve the SNR by five times, resolve differential phase jumps, and accurately estimate clutter, thus getting submillimeter-level vibration deformation at low SNR.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Innovation Team Building Support Program of the Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determination of UAV propellers speed with FMCW Radar: comparison with accelerometer data;2023 IEEE International Workshop on Technologies for Defense and Security (TechDefense);2023-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3