Experimental Electrical Assessment Evaluation of a Vertical n-PERT Half-Size Bifacial Solar Cell String Receiver on a Parabolic Trough Solar Collector

Author:

Cabral Diogo1ORCID,Hayati Abolfazl1ORCID,Gomes João12,Gorouh Hossein Afzali3ORCID,Nasseriyan Pouriya3,Salmanzadeh Mazyar3

Affiliation:

1. Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, Kungsbäcksvägen 47, 801 76 Gävle, Sweden

2. Research Department, MG Sustainable Engineering AB, Börjegatan 41B, 752 29 Uppsala, Sweden

3. Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman 76175 133, Iran

Abstract

A two-trough parabolic-shaped concentrating photovoltaic solar collector with a vertical half-size ‘phosphorus-passivated emitter rear totally diffused’ bifacial cell string receiver was designed and built for household applications, with the aim of smooth the electrical ‘duck curve’. The study consisted in testing the concentrating photovoltaic solar collector outdoors, under real weather conditions, for its daily electrical peak power and efficiency, as well as for its electrical transversal and longitudinal Incidence Angle Modifier direction. The outdoor testing measurements were conducted in a parabolic trough with low concentration coupled with a central vertical half-size ‘phosphorus-passivated emitter rear totally diffused’ bifacial cell string receiver. Furthermore, the electrical transversal Incidence Angle Modifier showed to be very delicate due to the position and outline of the receiver, which led to an electrical peak efficiency close to 10% at ±25° (i.e., for an electrical power output of around 49.3 W/m2). To validate the measured parameters, a ray-tracing software has been used, where the measured Incidence Angle Modifiers have a very good agreement with the simulated Incidence Angle Modifiers (e.g., deviation of <4%). Consequently, the concentrating solar collector met the objective of lowering the Photovoltaic cell stress and high radiation intensity, by shifting the electrical peak power at normal (e.g., at 0°) to higher incidence angles (e.g., ±25°); this aids the electrical demand peak shaving, by having the highest electrical power production displaced from the highest intensity solar radiation during the day.

Funder

Swedish Foundation for International Cooperation in Research and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference58 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of bifacial technology Pv systems;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2024-04-28

2. A Review of the Modeling of Parabolic Trough Solar Collectors Coupled to Solar Receivers with Photovoltaic/Thermal Generation;Energies;2024-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3