Affiliation:
1. Collage of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116024, China
2. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract
Considering the excellent environmental properties and heating capability under wide running conditions of the natural fluid CO2, the transcritical CO2 heat pump system has widely been used in the application of water heaters, commercial heating and cooling, electric vehicle thermal management, etc. Since the performance was highly affected by the discharge pressure and heat recovery rate in a transcritical CO2 system, the collaborative optimization of these two parameters was analyzed in detail in this study. The results showed that the optimal value of the system heating COP, which was the ration of heating capacity to power consumption, was better under a higher heat recovery rate and relatively lower discharge pressure, which is why these kinds of operating conditions are highly recommended from the perspective of collaborative optimization. Additionally, the heat recovery rate had a positive effect on the system performance when the discharge pressure was lower than its optimal value, while the heat recovery rate would present a passive effect on the system performance when the discharge pressure was higher than its optimal value. The relevant conclusions of this study provide a good theoretical basis for the efficient and stable operation of the transcritical CO2 heat pump technology under the conditions of a wide ambient temperature range.
Funder
National Natural Science Foundations of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献