Forecasting Long-Term Electricity Consumption in Saudi Arabia Based on Statistical and Machine Learning Algorithms to Enhance Electric Power Supply Management

Author:

Almuhaini Salma Hamad1ORCID,Sultana Nahid1ORCID

Affiliation:

1. Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia

Abstract

This study aims to develop statistical and machine learning methodologies for forecasting yearly electricity consumption in Saudi Arabia. The novelty of this study include (i) determining significant features that have a considerable influence on electricity consumption, (ii) utilizing a Bayesian optimization algorithm (BOA) to enhance the model’s hyperparameters, (iii) hybridizing the BOA with the machine learning algorithms, viz., support vector regression (SVR) and nonlinear autoregressive networks with exogenous inputs (NARX), for modeling individually the long-term electricity consumption, (iv) comparing their performances with the widely used classical time-series algorithm autoregressive integrated moving average with exogenous inputs (ARIMAX) with regard to the accuracy, computational efficiency, and generalizability, and (v) forecasting future yearly electricity consumption and validation. The population, gross domestic product (GDP), imports, and refined oil products were observed to be significant with the total yearly electricity consumption in Saudi Arabia. The coefficient of determination R2 values for all the developed models are >0.98, indicating an excellent fit of the models with historical data. However, among all three proposed models, the BOA–NARX has the best performance, improving the forecasting accuracy (root mean square error (RMSE)) by 71% and 80% compared to the ARIMAX and BOA–SVR models, respectively. The overall results of this study confirm the higher accuracy and reliability of the proposed methods in total electricity consumption forecasting that can be used by power system operators to more accurately forecast electricity consumption to ensure the sustainability of electric energy. This study can also provide significant guidance and helpful insights for researchers to enhance their understanding of crucial research, emerging trends, and new developments in future energy studies.

Funder

Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3