Multi-Method Technics and Deep Neural Networks Tools on Board ARGO USV for the Geoarchaeological and Geomorphological Mapping of Coastal Areas: The Case of Puteoli Roman Harbour

Author:

Mattei Gaia1ORCID,Aucelli Pietro P. C.1ORCID,Ciaramella Angelo1ORCID,De Luca Luigi1,Greco Alberto1,Mellone Gennaro1ORCID,Peluso Francesco1,Troisi Salvatore1ORCID,Pappone Gerardo1ORCID

Affiliation:

1. Department of Science and Technology, Parthenope University of Naples, 80133 Napoli, Italy

Abstract

The ARGO-USV (Unmanned Surface Vehicle for ARchaeological GeO-application) is a technological project involving a marine drone aimed at devising an innovative methodology for marine geological and geomorphological investigations in shallow areas, usually considered critical areas to be investigated, with the help of traditional vessels. The methodological approach proposed in this paper has been implemented according to a multimodal mapping technique involving the simultaneous and integrated use of both optical and geoacoustic sensors. This approach has been enriched by tools based on artificial intelligence (AI), specifically intended to be installed onboard the ARGO-USV, aimed at the automatic recognition of submerged targets and the physical characterization of the seabed. This technological project is composed of a main command and control system and a series of dedicated sub-systems successfully tested in different operational scenarios. The ARGO drone is capable of acquiring and storing a considerable amount of georeferenced data during surveys lasting a few hours. The transmission of all acquired data in broadcasting allows the cooperation of a multidisciplinary team of specialists able to analyze specific datasets in real time. These features, together with the use of deep-learning-based modules and special attention to green-compliant construction phases, are the particular aspects that make ARGO-USV a modern and innovative project, aiming to improve the knowledge of wide coastal areas while minimizing the impact on these environments. As a proof-of-concept, we present the extensive mapping and characterization of the seabed from a geoarchaeological survey of the underwater Roman harbor of Puteoli in the Gulf of Naples (Italy), demonstrating that deep learning techniques can work synergistically with seabed mapping methods.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3