Remote Wind Farm Path Planning for Patrol Robot Based on the Hybrid Optimization Algorithm

Author:

Chen Luobing,Hu Zhiqiang,Zhang FangfangORCID,Guo Zhongjin,Jiang Kun,Pan Changchun,Ding Wei

Abstract

Globally, wind power plays a leading role in the renewable energy industry. In order to ensure the normal operation of a wind farm, the staff will regularly check the equipment of the wind farm. However, manual inspection has some disadvantages, such as heavy workload, low efficiency and easy misjudgment. In order to realize automation, intelligence and high efficiency of inspection work, inspection robots are introduced into wind farms to replace manual inspections. Path planning is the prerequisite for an intelligent inspection robot to complete inspection tasks. In order to ensure that the robot can take the shortest path in the inspection process and avoid the detected obstacles at the same time, a new path-planning algorithm is proposed. The path-planning algorithm is based on the chaotic neural network and genetic algorithm. First, the chaotic neural network is used for the first step of path planning. The planning results are encoded into chromosomes to replace the individuals with the worst fitness in the genetic algorithm population. Then, according to the principle of survival of the fittest, the population is selected, hybridized, varied and guided to cyclic evolution to obtain the new path. The shortest path obtained by the algorithm can be used for the robot inspection of the wind farms in remote areas. The results show that the proposed new algorithm can generate a shorter inspection path than other algorithms.

Funder

International Collaborative Research Project of Qilu University of Technology

National key research and development program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3