A Study on Spatial-Temporal Differentiation and Influencing Factors of Agricultural Water Footprint in the Main Grain-Producing Areas in China

Author:

Wang Yun,Su Zhaoxian,Zhang Qingqing

Abstract

It is an urgent scientific issue to explore the spatial and temporal differentiation and impact indicators of the agricultural water footprint in major grain-producing areas. Therefore, this study tries to use the water footprint theory to implement top-down calculation of the agricultural water footprint in major grain-producing regions from 2000 to 2019 and investigate the various impacts on the agricultural water footprint under the influence of spatial-temporal effects using spatial autocorrelation and the spatial Dubin model. The results indicate that from 2000 to 2019, the overall agricultural water footprint of China showed a fluctuating downward trend in an inverted N shape and demonstrated high–high and low–low spatial aggregation characteristics. There are notable characteristics, including high spatial dependence, spatial barriers, and path locking of the agricultural water footprint in most provinces and regions of the main grain-producing areas. Policy factors, water-saving technologies, social development, economic development, and industrial structure adjustment are all significantly and negatively correlated with the increase in the agricultural water footprint, while agricultural production and natural factors have a significant positive relationship with the agricultural water footprint. The spatial spillover effect of water-saving technologies, industrial restructuring, agricultural production, and natural factors is powerful. Therefore, a rationally optimized industrial structure, strengthened regional linkage of water resources management and control, and the promotion of efficient water infrastructure technology are important ways to inhibit the agricultural water footprint.

Funder

Soft Science Research Project of Henan Province, “Study on generation mechanism and realization path of water-carbon-production nexus of Henan Province”

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3