Numerical Modelling and Simulation of Heat Transfer during Magnetic Moulding of Al/SiCp Metal Matrix Composites

Author:

Chandran Arun Prakash,Ravimanalan Suraj,Bennet Anand Ronald

Abstract

In traditional casting, sand is used as a mould material to carry heat away from the melt. However, sand has certain disadvantages, such as poor thermal conductivity, burning of binders, undesirable transition resulting in mould failure, and defects in the components. To overcome these limitations, magnetic moulding technology was introduced more than a few decades ago, but the process never achieved the required industrial developments to commercialise this technology. It is essential to reconsider and develop this technology further to use it as a regular production process. In this paper, processing of Al/SiCp composite using magnetic moulding technology is discussed. The heat transfer results of magnetic moulding process are simulated using COMSOL Multiphysics software and compared with the sand casting process. The temperature distribution, thermal conductivity, and phase change have been studied, finding that steel shots as mould materials show better heat transfer results when compared with sand. This better heat transfer led to a decrease in solidification time by 25%, which in turn improved the hardness (by 70%), impact toughness (by 4 times), and wear resistance (by 42%) of the Al/SiCp cast produced. These results very clearly illustrate the unique signature of the magnetic moulding process.

Funder

Department of Science and Technologygrant

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference21 articles.

1. Challenges and Future Prospective of Alternative Materials to Silica Sand for Green Sand Mould Casting: A Review;Jain;Trans. Indian Inst. Met.,2021

2. Evaluation of mechanical properties, economic and environmental benefits of partially replacing silica sand with biomass ash for aluminium casting;Srinivasan;Mater. Today Proc.,2018

3. Complete Casting Handbook;Campbell,2011

4. The New Third Generation of Moulding Processes;Wittmoser,1975

5. Permanent-Mould Casting. Number 3461–3463 in Encyclopedia of Material Science and Engineering;Desai,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3