WSN-Based SHM Optimisation Algorithm for Civil Engineering Structures

Author:

Liu Ying

Abstract

With the development of economy and the improvement of architectural aesthetics, civil structure buildings show a trend of diversification and complexity, which brings great challenges to the Structural Health Monitoring (SHM) of civil structure buildings. In order to optimise the structural health monitoring effect of civil structures, reduce monitoring costs, and improve the ability of civil structures to deal with risks, a civil structure health monitoring method combining Variational Modal Decomposition (VMD) and the Gated Recurrent Unit (GRU) is proposed. The gated neural network algorithm of modal decomposition is used, and then a wireless sensor network (WSN) civil structure health monitoring model is constructed on this basis. Finally, the application effect of the model is tested and analysed. The results show that the network energy consumption of this model can reach a minimum of 0.05 J, which is 0.05 J less than that of the Gate Recurrent Unit (GRU) model. The minimum loss value is 0.08. Its Mean Absolute Error (MAE), Root-Mean-Square Error (RMSE), and Mean Absolute Percent Error (MAPE) are 0.03, 0.04, and 0.06, respectively; the prediction error is the smallest, the overall amplitude difference monitored by the model remains at a low level of less than 0.01, and the changes are closest to the real situation. This shows that the model improves the operation efficiency, improves the accuracy of health monitoring, enhances the adaptability of building structural health monitoring to complex structures, provides a new way for the development of building structural health monitoring technology, and is conducive to enhancing civil structures. The safety and stability of buildings promote the high-quality development of civil and structural buildings.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference32 articles.

1. Development of a time-dependent structural reliability model for civil engineering structures;Nichols;Mason. Int.,2019

2. Flexible battery-free wireless electronic system for food monitoring

3. Pricing Policy for a Dynamic Spectrum Allocation Scheme with Batch Requests and Impatient Packets in Cognitive Radio Networks

4. A multi–source fluid queue based stochastic model of the probabilistic offloading strategy in a MEC system with multiple mobile devices and a single MEC server;Zheng;Int. J. Appl. Math. Comput. Sci.,2022

5. Structural Health Monitoring and Prognostic of Industrial Plants and Civil Structures: A Sensor to Cloud Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3