Parameter Estimation of KST-IRT Model under Local Dependence

Author:

Ye Sangbeak1,Kelava Augustin1,Noventa Stefano1

Affiliation:

1. Methods Center, University of Tübingen, 72074 Tübingen, Germany

Abstract

A mantra often repeated in the introductory material to psychometrics and Item Response Theory (IRT) is that a Rasch model is a probabilistic version of a Guttman scale. The idea comes from the observation that a sigmoidal item response function provides a probabilistic version of the characteristic function that models an item response in the Guttman scale. It appears, however, more difficult to reconcile the assumption of local independence, which traditionally accompanies the Rasch model, with the item dependence existing in a Guttman scale. In recent work, an alternative probabilistic version of a Guttman scale was proposed, combining Knowledge Space Theory (KST) with IRT modeling, here referred to as KST-IRT. The present work has, therefore, a two-fold aim. Firstly, the estimation of the parameters involved in KST-IRT models is discussed. More in detail, two estimation methods based on the Expectation Maximization (EM) procedure are suggested, i.e., Marginal Maximum Likelihood (MML) and Gibbs sampling, and are compared on the basis of simulation studies. Secondly, for a Guttman scale, the estimates of the KST-IRT models are compared with those of the traditional combination of the Rasch model plus local independence under the interchange of the data generation processes. Results show that the KST-IRT approach might be more effective in capturing local dependence as it appears to be more robust under misspecification of the data generation process, but it comes with the price of an increased number of parameters.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

Reference36 articles.

1. Lord, F., and Novik, M.R. (1968). Statistical Theories of Mental Test Scores, Addison-Wesley Publishing Company.

2. Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests, Nielsen & Lydiche.

3. Fischer, G., and Molenaar, I.W. (1995). Rasch Models: Foundations, Recent Developments, and Applications, Springer.

4. Mokken, R. (1971). A Theory and Procedure of Scale Analysis: With Applications in Political Research, Walter de Gruyter, Mouton.

5. Isotonic ordinal probabilistic models;Scheiblechner;Psychometrika,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3