Experimental Investigation of a Complex System of Impinging Jets Using Infrared Thermography

Author:

Schweikert Julia,Weigand Bernhard

Abstract

A central task in aviation technology is the development of efficient cooling techniques for thermal highly loaded engine components. For an optimal design of the cooling mechanisms, the heat transfer characteristics have to be known and need to be describable. As a cooling concept for low-pressure turbine casings, complex systems of impinging jets are used in order to reduce blade tip clearances during the flight mission. In order to improve established theoretical model approaches, this paper presents a novel method for the experimental investigation of such a complex system with 200 impinging jets using infrared thermography. The presented experimental method uses a thin electrically heated chrome-aluminum foil as target plate. Modeling the transient effects inside the foil, small structures and high gradients in the heat transfer coefficient can be reproduced with good accuracy. Experimental results of the local heat transfer characteristics are reported for jet Reynolds numbers of Re=2000…6000. The influence of the jet-to-jet distance and the jet Reynolds number on the Nusselt numbers are quantified with Nu∼(S/D)−0.47 and Nu∼Re0.7. The results indicate a dependency of the flow regime for the relatively low jet Reynolds numbers, as it is known from literature.

Funder

MTU Aero Engines

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

Reference33 articles.

1. Sealing in Turbomachinery;Chupp;J. Propuls. Power,2006

2. Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces;Martin;Advances in Heat Transfer,1977

3. Case 25: Normally-Impinging Jet from a Circular Nozzle. 2022.

4. Numerical study of a turbulent impinging jet for different jet-to-plate distances using two equation turbulence models;Wienand;Eur. J. Mech.-B/Fluids,2017

5. Multiple Jet Impingement—A Review;Weigand;Heat Transf. Res.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3