Quality Analysis of a High-Precision Kinematic Laser Scanning System for the Use of Spatio-Temporal Plant and Organ-Level Phenotyping in the Field

Author:

Esser Felix1ORCID,Klingbeil Lasse1ORCID,Zabawa Lina1,Kuhlmann Heiner1

Affiliation:

1. Institute of Geodesy and Geoinformation, University of Bonn, Nußallee 17, 53115 Bonn, Germany

Abstract

Spatio–temporal determination of phenotypic traits, such as height, leaf angles, and leaf area, is important for the understanding of crop growth and development in modern agriculture and crop science. Measurements of these parameters for individual plants so far have been possible only in greenhouse environments using high-resolution 3D measurement techniques, such as laser scanning or image-based 3D reconstruction. Although aerial and ground-based vehicles equipped with laser scanners and cameras are more and more used in field conditions to perform large-scale phenotyping, these systems usually provide parameters more on the plot level rather than on a single plant or organ level. The reason for this is that the quality of the 3D information generated with those systems is mostly not high enough to reconstruct single plants or plant organs. This paper presents the usage of a robot equipped with a high-resolution mobile laser scanning system. We use the system, which is usually used to create high-definition 3D maps of urban environments, for plant and organ-level morphological phenotyping in agricultural field conditions. The analysis focuses on the point cloud quality as well as the system’s potential by defining quality criteria for the point cloud and system and by using them to evaluate the measurements taken in an experimental agricultural field with different crops. Criteria for evaluation are the georeferencing accuracy, point precision, spatial resolution, and point cloud completeness. Additional criteria are the large-scale scan efficiency and the potential for automation. Wind-induced plant jitter that may affect the crop point cloud quality is discussed afterward. To show the system’s potential, exemplary phenotypic traits of plant height, leaf area, and leaf angles for different crops are extracted based on the point clouds. The results show a georeferencing accuracy of 1–2 cm, a point precision on crop surfaces of 1–2 mm, and a spatial resolution of just a few millimeters. Point clouds become incomplete in the later stages of growth since the vegetation is denser. Wind-induced plant jitters can lead to distorted crop point clouds depending on wind force and crop size. The phenotypic parameter extraction of leaf area, leaf angles, and plant height from the system’s point clouds highlight the outstanding potential for 3D crop phenotyping on the plant-organ level in agricultural fields.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3