Hyperspectral Image Classification via Information Theoretic Dimension Reduction

Author:

Islam Md Rashedul1ORCID,Siddiqa Ayasha1,Ibn Afjal Masud1ORCID,Uddin Md Palash12ORCID,Ulhaq Anwaar3ORCID

Affiliation:

1. Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh

2. School of Information Technology, Deakin University, Geelong, VIC 3220, Australia

3. School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW 2795, Australia

Abstract

Hyperspectral images (HSIs) are one of the most successfully used tools for precisely and potentially detecting key ground surfaces, vegetation, and minerals. HSIs contain a large amount of information about the ground scene; therefore, object classification becomes the most difficult task for such a high-dimensional HSI data cube. Additionally, the HSI’s spectral bands exhibit a high correlation, and a large amount of spectral data creates high dimensionality issues as well. Dimensionality reduction is, therefore, a crucial step in the HSI classification pipeline. In order to identify a pertinent subset of features for effective HSI classification, this study proposes a dimension reduction method that combines feature extraction and feature selection. In particular, we exploited the widely used denoising method minimum noise fraction (MNF) for feature extraction and an information theoretic-based strategy, cross-cumulative residual entropy (CCRE), for feature selection. Using the normalized CCRE, minimum redundancy maximum relevance (mRMR)-driven feature selection criteria were used to enhance the quality of the selected feature. To assess the effectiveness of the extracted features’ subsets, the kernel support vector machine (KSVM) classifier was applied to three publicly available HSIs. The experimental findings manifest a discernible improvement in classification accuracy and the qualities of the selected features. Specifically, the proposed method outperforms the traditional methods investigated, with overall classification accuracies on Indian Pines, Washington DC Mall, and Pavia University HSIs of 97.44%, 99.71%, and 98.35%, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3