Simulations of Snowmelt Runoff in a High-Altitude Mountainous Area Based on Big Data and Machine Learning Models: Taking the Xiying River Basin as an Example

Author:

Wang Guoyu12,Hao Xiaohua2ORCID,Yao Xiaojun1ORCID,Wang Jian2,Li Hongyi2ORCID,Chen Rensheng3ORCID,Liu Zhangwen3ORCID

Affiliation:

1. College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China

2. Heihe Remote Sensing Experimental Research Station, Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

As an essential data-driven model, machine learning can simulate runoff based on meteorological data at the watershed level. It has been widely used in the simulation of hydrological runoff. Considering the impact of snow cover on runoff in high-altitude mountainous areas, based on remote sensing data and atmospheric reanalysis data, in this paper we established a runoff simulation model with a random forest model and ANN (artificial neural network) model for the Xiying River Basin in the western Qilian region The verification of the measured data showed that the NSE (Nash–Sutcliffe efficiency), RMSE (root mean square error), and PBIAS (percent bias) values of the random forest model and ANN model were 0.701 and 0.748, 6.228 m3/s and 4.554 m3/s, and 4.903% and 8.329%, respectively. Considering the influence of ice and snow on runoff, the simulation accuracy of both the random forest model and ANN model was improved during the period of significant decreases in the annual snow and ice water equivalent in the Xiying River Basin from April to May, after the snow remote sensing data were introduced into the model. Specifically, for the random forest model, the NSE increased by 0.099, the RMSE decreased by 0.369 m3/s, and the PBIAS decreased by 1.689%. For the ANN model, the NSE increased by 0.207, the RMSE decreased by 0.700 m3/s, and the PBIAS decreased by 1.103%. In this study, based on remote sensing data and atmospheric reanalysis data, the random forest model and ANN model were used to effectively simulate hydrological runoff processes in high-altitude mountainous areas without observational data. In particular, the accuracy of the machine learning simulations of snowmelt runoff (especially during the snowmelt period) was effectively improved by introducing the snow remote sensing data, which can provide a methodological reference for the simulation and prediction of snowmelt runoff in alpine mountains.

Funder

National Natural Science Foundation of China

National Key Research Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3