Limited-Samples-Based Crop Classification Using a Time-Weighted Dynamic Time Warping Method, Sentinel-1 Imagery, and Google Earth Engine

Author:

Xiao Xingyuan1ORCID,Jiang Linlong1,Liu Yaqun2ORCID,Ren Guozhen3

Affiliation:

1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China

2. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. Shandong Ruizhi Flight Control Technology, Co., Ltd., Qingdao 266500, China

Abstract

Reliable crop type classification supports the scientific basis for food security and sustainable agricultural development. However, it still lacks a limited-samples-based crop classification method which is labor- and time-efficient. To this end, we used the Google Earth Engine (GEE) and Sentinel-1A/B SAR time series to develop eight types of crop classification strategies based on different sampling methods of central and scattered, different perspectives of object-based and pixel-based, and different classifiers of the Time-Weighted Dynamic Time Warping (TWDTW) and Random Forest (RF). We carried out 30-times classifications with different samples for each strategy to classify the crop types at the North Dakota–Minnesota border in the U.S. We then compared their classification accuracies and assessed the accuracy sensitivity to sample size. The results found that the TWDTW generally performed better than RF, especially for small-sample classification. Object-based classifications had higher accuracies than pixel-based classifications, and the object-based TWDTW had the highest accuracy. RF performed better in scattered sampling than the central sampling strategy. TWDTW performed better than RF in distinguishing soybean and dry bean with similar curves. The accuracies improved for all eight classification strategies with increasing sample size, and TWDTW was more robust, while RF was more sensitive to sample size change. RF required many more samples than TWDTW to achieve satisfactory accuracy, and it performed better than TWDTW when the sample size exceeded 50. The accuracy comparisons indicated that the TWDTW has stronger temporal and spatial generalization capabilities and has high potential applications for early, historical, and limited-samples-based crop type classification. The findings of our research are worthwhile contributions to the methodology and practices of crop type classification as well as sustainable agricultural development.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3