Decadal Quasi-2-Day Wave Observations in the Equatorial Mesopause Region by a Meteor Radar over Kototabang (0.2°S, 100.3°E) and TIMED/TIDI and Comparison with Quasi-2-Day Wave Observations at Mid-Latitudes

Author:

Sun Ruidi1ORCID,Gu Sheng-Yang1,Dou Xiankang1,Wei Yafei1,Qin Yusong1ORCID,Yang Zhenlin1ORCID

Affiliation:

1. Electronic Information School, Wuhan University, Wuhan 430072, China

Abstract

We studied the characteristics of quasi-two-day wave (QTDW) using the meridional wind in the mesosphere and lower thermosphere (MLT) obtained from a meteor radar over Kototabang (KB, 0.2°S, 100.3°E) from 2003 to 2012. Atmospheric oscillations have a crucial impact on atmospheric dynamics, which contributes to more accurate space weather forecasting, thus providing a more secure space environment for human space exploration activities such as remote sensing and satellite navigation. QTDWs are typical atmospheric oscillations in the upper stratosphere, mesosphere and lower thermosphere. The occurrence time, amplitudes, periods and vertical wavelengths of QTDW events are analyzed statistically. Data obtained from the TIMED Doppler Interferometer (TIDI), which can measure wind and temperature and is onboard the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite, are used to analyze the global distribution and spatial structure of QTDWs with different zonal wavenumbers. The characteristics of the QTDWs over KB are compared with the QTDWs at the middle latitudes using the meridional wind data from a meteor radar over Wuhan (114.4°E, 30.6°N), Beijing (116.5°E, 39.9°N) and Mohe (121.1°E, 50.1°N). The amplitudes of the QTDW and spectral analysis are calculated by the least squares fitting method. Our results demonstrate that QTDWs are present almost all year around over KB. The occurrence time, amplitudes, periods and vertical wavelengths of QTDW events with different zonal wavenumbers are determined in this study. We also find that the statistical characteristics of the QTDWs in KB are different from those at middle latitudes. The westward zonal wavenumber −4 (W4) events gradually increase with increasing latitude, whereas westward zonal wavenumbers −1, −2, and −3 (W1, W2 and W3, respectively) events all decrease with increasing latitude.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference49 articles.

1. Impact of the interaction between the quasi-2 day wave and tides on the ionosphere and thermosphere;Yue;J. Geophys. Res. Space Phys.,2016

2. Numerical simulation of tides, Rossby and Kelvin waves with the COMMA-LIM model;Pogoreltsev;Adv. Space Res.,2003

3. Short-term variability in the migrating diurnal tide caused by interactions with the quasi 2 day wave;Chang;J. Geophys. Res. Atmos.,2011

4. The Delayed Response of the Troposphere-Stratosphere-Mesosphere Coupling to the 2019 Southern SSW;Yang;Geophys. Res. Lett.,2022

5. A discussion on D and E region winds over Europe-Long-period meteor wind oscillations;Muller;Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci.,1972

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3