Severe Precipitation Recognition Using Attention-UNet of Multichannel Doppler Radar

Author:

Chen Weishu123,Hua Wenjun123,Ge Mengshu123,Su Fei123,Liu Na4,Liu Yujia4,Xiong Anyuan4

Affiliation:

1. Key Laboratory of Interactive Technology and Experience System, Ministry of Culture and Tourism, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Beijing Key Laboratory of Network System and Network Culture, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China

4. National Meteorological Information Center, Beijing 100081, China

Abstract

Quantitative precipitation estimation (QPE) plays an important role in meteorology and hydrology. Currently, multichannel Doppler radar image is used for QPE based on some traditional methods like the Z − R relationship, which struggles to capture the complicated non-linear spatial relationship. Encouraged by the great success of using Deep Learning (DL) segmentation networks in medical science and remoting sensing, a UNet-based network named Reweighted Regression Encoder–Decoder Net (RRED-Net) is proposed for QPE in this paper, which can learn more complex non-linear information from the training data. Firstly, wavelet transform (WT) is introduced to alleviate the noise in radar images. Secondly, a wider receptive field is obtained by taking advantage of attention mechanisms. Moreover, a new Regression Focal Loss is proposed to handle the imbalance problem caused by the extreme long-tailed distribution in precipitation. Finally, an efficient feature selection strategy is designed to avoid exhaustion experiments. Extensive experiments on 465 real processes data demonstrate that the superiority of our proposed RRED-Net not only in the threat score (TS) in the severe precipitation (from 17.6% to 39.6%, ≥20 mm/h) but also the root mean square error (RMSE) comparing to the traditional Z-R relationship-based method (from 2.93 mm/h to 2.58 mm/h, ≥20 mm/h), baseline models and other DL segmentation models.

Funder

Chinese National Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3