A Preliminary Assessment of the GSMaP Version 08 Products over Indonesian Maritime Continent against Gauge Data

Author:

Ramadhan Ravidho1,Marzuki Marzuki1ORCID,Yusnaini Helmi1,Muharsyah Robi2ORCID,Tangang Fredolin3ORCID,Vonnisa Mutya1,Harmadi Harmadi1

Affiliation:

1. Department of Physics, Universitas Andalas, Padang 25163, Indonesia

2. Agency for Meteorology, Climatology and Geophysics of Republic Indonesia, Jakarta 10610, Indonesia

3. Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

Abstract

This study is a preliminary assessment of the latest version of the Global Satellite Measurement of Precipitation (GSMaP version 08) data, which were released in December 2021, for the Indonesian Maritime Continent (IMC), using rain gauge (RG) observations from December 2021 to June 2022. Assessments were carried out with 586 rain gauge (RG) stations using a point-to-pixel approach through continuous statistical and contingency table metrics. It was found that the coefficient correlation (CC) of GSMaP version 08 products against RG observations varied between low (CC = 0.14–0.29), moderate (CC = 0.33–0.45), and good correlation (CC = 0.72–0.75), for the hourly, daily, and monthly scales with a tendency to overestimate, indicated by a positive relative bias (RB). Even though the correlation of hourly data is still low, GSMaP can still capture diurnal patterns in the IMC, as indicated by the compatibility of the estimated peak times for the precipitation amount and frequency. GSMaP data also manage to observe heavy rainfall, as indicated by the good of detection (POD) values for daily data ranging from probability 0.71 to 0.81. Such a good POD value of daily data is followed by a relatively low false alarm ratio (FAR) (FAR < 0.5). However, the GSMaP overestimates light rainfall (R < 1 mm/day); as a consequence, it overestimates the consecutive wet days (CWD) and number of days with rainfall ≥ 1 mm (R1mm) indices, and underestimates the consecutive dry days (CDD) extreme rain index. GSMaP daily data accuracy depends on IMC’s topographic conditions, especially for GSMaP real-time data. Of all GSMaP version 08 products evaluated, outperformed post-real-time non-gauge-calibrated (GSMaP_MVK), and followed by post-real-time gauge-calibrated (GSMaP_Gauge), near-real-time gauge-calibrated (GSMaP_NRT_G), near-real-time non-gauge-calibrated (GSMaP_NRT), real-time gauge-calibrated (GSMaP_Now_G), and real-time non-gauge-calibrated (GSMaP_Now). Thus, GSMaP near-real-time data have the potential for observing rainfall in IMC with faster latency.

Funder

Universitas Andalas

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3