Spatiotemporal Dynamics of Water Quality Indicators in Koka Reservoir, Ethiopia

Author:

Assegide Endaweke123ORCID,Shiferaw Hailu3ORCID,Tibebe Degefie3,Peppa Maria V.4,Walsh Claire L.4ORCID,Alamirew Tena13ORCID,Zeleke Gete3

Affiliation:

1. Ethiopian Institute of Water Resource, Addis Ababa University, Addis Ababa P.O. Box 150461, Ethiopia

2. School of Architecture and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia

3. Water and Land Resource Center, Addis Ababa University, Addis Ababa P.O. Box 3880, Ethiopia

4. School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Abstract

The science and application of the Earth observation system are receiving growing traction and wider application, and the scope is becoming wider and better owing to the availability of the higher resolution of satellite remote sensing products. A water quality monitoring model was developed using Sentinel-2 satellite remote sensing data set to investigate the spatiotemporal dynamics of water quality indicators at Koka Reservoir. L1C images were processed with an Atmospheric correction processor ACOLITE. The months from June 2021 to May 2022 and the years 2017 to 2022 were used for the temporal analyses. Algorithms were developed by using regression analysis and developing empirical models by correlating satellite reflectance data with in situ Chlorophyll-a (Chl-a), turbidity (TU), and Total suspended matter (TSS) measurements. All of the analyzed parameters have determination coefficients (R2) greater than 0.67, indicating that they can be turned into predictive models. R2 for the developed algorithms were 0.91, 0.92, and 0.67, indicating that good correlations have been found between field-based and estimated Chl-a, TU, and TSS, respectively. Accordingly, the mean monthly Chl-a, TU, and TSS levels have ranged from (59.69 to 144.25 g/L), (79.67 to 115.39 NTU), and (38.46 to 368.97 mg/L), respectively. The annual mean Chl-a, TU, and TSS vary from (52.86–96.19 µg/L), (71.04–83 NTU), and (36.58–159.26 mg/L), respectively, showing that the reservoir has been continuously polluted over the last seven years. The spatial study found that the distributions of Chl-a, TU, and TSS were heterogeneous, with Chl-a being greater in the south and southwest, and TU and TSS being higher on the western shore of the reservoir. In conclusion, these results show that there are spatial as well as temporal variations on water quality parameters. The proposed algorithms are capable of detecting optically active water quality indicators and can be applied in similar environmental situations.

Funder

Water and Land Resource Center

Addis Ababa University

Water Security and Sustainable Development Hub funded by the UK Research and Innovation’s Global Challenges Research Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference89 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3