Coseismic Rupture Behaviors of the January and March 2022 MW > 5.5 Hala Lake Earthquakes, NE Tibet, Constrained by InSAR Observations

Author:

Yang Jiuyuan1,Xu Caijun123ORCID,Wen Yangmao12ORCID

Affiliation:

1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China

3. Hubei Luojia Laboratory, Wuhan 430079, China

Abstract

On 23 January and 25 March 2022, two MW > 5.5 Hala Lake earthquakes characterized by right-lateral strike-slip faulting occurred around the Elashan Fault in Northeastern Tibet, marking the two largest events since the 1927 MW 6.2 Hala Lake earthquake. Since no surface rupture related to the two earthquakes has been reported, the seismogenic faults and coseismic rupture behaviors of the two events are still unknown. The occurrence of the two events provides a rare opportunity to gain insight into the seismogenic structure and rupture behavior of the less studied region, further helping us accurately evaluate the regional seismic hazard. Here, we first exploit Interferometric synthetic aperture radar (InSAR) data to obtain the coseismic deformation associated with the two earthquakes and then invert for the fault geometry and detailed coseismic slip of the two events. Coseismic modeling reveals that the January and March 2022 earthquakes ruptured two buried west-dipping moderate-angle and high-angle right-lateral strike-slip faults, respectively. Most of the slip of the January event occurred at depths from 1.7–7.6 km, while the majority of the slip associated with the March event occurred at depths from 2.5–10 km, which may have been restricted by the intersections between the January and March Hala Lake seismogenic faults. By a comprehensive analysis of the coseismic inversions, stress changes, and early postseismic signal, we suggest that the significant fault dip difference (~30°), highlighting a fault segmentation, stops the rupture propagation from one fault segment to another and that fluid migration may encourage the restart of the rupture of the later event, which requires further investigation. Moreover, Coulomb stress modeling shows stress loading on the eastern segment of the Daxueshan–Shule Fault and the northern segment of the Elashan fault, which we should pay more attention to.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3