Developing a near Real-Time Cloud Cover Retrieval Algorithm Using Geostationary Satellite Observations for Photovoltaic Plants

Author:

Xia Pan1,Min Min1ORCID,Yu Yu2ORCID,Wang Yun3,Zhang Lu4

Affiliation:

1. Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University (Guangdong, Zhuhai), Zhuhai 519082, China

2. National Meteorological Information Centre, China Meteorological Administration, Beijing 100081, China

3. China General Nuclear Power Group (CGN), Wind Energy Co., Ltd., Beijing 100106, China

4. Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites and Innovation Center for FengYun Meteorological Satellite (FYSIC), National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China

Abstract

Clouds can block solar radiation from reaching the surface, so timely and effective cloud cover test and forecasting is critical to the operation and economic efficiency of photovoltaic (PV) plants. Traditional cloud cover algorithms based on meteorological satellite observation require many auxiliary data and computing resources, which are hard to implement or transplant for applications at PV plants. In this study, a portable and fast cloud mask algorithm (FCMA) is developed to provide near real-time (NRT) spatial-temporally matched cloud cover products for PV plants. The geostationary satellite imager data from the Advanced Himawari Imager aboard Himawari-8 and the related operational cloud mask algorithm (OCMA) are employed as benchmarks for comparison and validation. Furthermore, the ground-based manually observed cloud cover data at seven quintessential stations at 08:00 and 14:00 BJT (Beijing Time) in 2017 are employed to verify the accuracy of cloud cover data derived from FCMA and OCMA. The results show a high consistency with the ground-based data, and the average correlation coefficient (R) is close to 0.85. Remarkably, the detection accuracy of FCMA is slightly higher than that of OCMA, demonstrating the feasibility of FCMA for providing NRT cloud cover at PV plants.

Funder

Guangdong Major Project of Basic and Applied Basic Research

National Natural Science Foundation of China

Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3