Sea Surface Temperature Gradients Estimation Using Top-of-Atmosphere Observations from the ESA Earth Explorer 10 Harmony Mission: Preliminary Studies

Author:

Ciani Daniele1ORCID,Sabatini Mattia1ORCID,Buongiorno Nardelli Bruno2ORCID,Lopez Dekker Paco3,Rommen Björn4,Wethey David S.5ORCID,Yang Chunxue1,Liberti Gian Luigi1ORCID

Affiliation:

1. Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, 00133 Rome, Italy

2. Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, 80133 Naples, Italy

3. Department of Geoscience and Remote Sensing, Technische Universiteit Delft, 2628 Delft, The Netherlands

4. European Space Research and Technology Center, European Space Agency, 2201 Noordwijk, The Netherlands

5. Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA

Abstract

The Harmony satellite mission was recently approved as the next European Space Agency (ESA) Earth Explorer 10. The mission science objectives cover several applications related to solid earth, the cryosphere, upper-ocean dynamics and air–sea interactions. The mission consists of a constellation of two satellites, flying with the Copernicus Sentinel 1 (C or D) spacecraft, each hosting a C-band receive-only radar and a thermal infrared (TIR) payload. From an ocean dynamics/air–sea interaction perspective, the mission will provide the unique opportunity to observe simultaneously the signature of submesoscale upper-ocean processes via synthetic aperture radar and TIR imagery. The TIR imager is based on microbolometer technology and its acquisitions will rely on four channels: three narrow-band channels yielding observations at a ≃1 km spatial sampling distance (SSD) and a panchromatic (PAN, 8–12 μm) channel characterized by a ≃300 m SSD. Our study investigates the potential of Harmony in retrieving spatial features related to sea surface temperature (SST) gradients from the high-resolution PAN channel, relying on top-of-atmosphere (TOA) observations. Compared to a standard SST gradient retrieval, our approach does not require atmospheric correction, thus avoiding uncertainties due to inter-channel co-registration and radiometric consistency, with the possibility of exploiting the higher resolution of the PAN channel. The investigations were carried out simulating the future Harmony TOA radiances (TARs), as well as relying on existing state-of-the-art level 1 satellite products. Our approach enables the correct description of SST features at the sea surface avoiding the generation of spurious features due to atmospheric correction and/or instrumental issues. In addition, analyses based on existing satellite products suggest that the clear-sky TOA observations, in a typical mid-latitude scene, allow the reconstruction of up to 85% of the gradient magnitudes found at the sea-surface level. The methodology is less efficient in tropical areas, suffering from smoothing effects due to the high concentrations of water vapor.

Funder

TU-DELFT

NASA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3