Monitoring Green Tide in the Yellow Sea Using High-Resolution Imagery and Deep Learning

Author:

Shang Weitao123ORCID,Gao Zhiqiang12,Gao Meng4,Jiang Xiaopeng12

Affiliation:

1. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

2. Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China

Abstract

Green tide beaching events have occurred frequently in the Yellow Sea since 2007, causing a series of ecological and economic problems. Satellite imagery has been widely applied to monitor green tide outbreaks in open water. Traditional satellite sensors, however, are limited by coarse resolution or a low revisit rate, making it difficult to provide timely distribution of information about green tides in the nearshore. In this study, both PlanetScope Super Dove images and unmanned aerial vehicle (UAV) images are used to monitor green tide beaching events on the southern side of Shandong Peninsula, China. A deep learning model (VGGUnet) is used to extract the green tide features and quantify the green tide coverage area or biomass density. Compared with the U-net model, the VGGUnet model has a higher accuracy on the Super Dove and UAV images, with F1-scores of 0.93 and 0.92, respectively. The VGGUnet model is then applied to monitor the distribution of green tide on the beach and in the nearshore water; the results suggest that the VGGUnet model can accurately extract green tide features while discarding other confusing features. By using the Super Dove and UAV images, green tide beaching events can be accurately monitored and are consistent with field investigations. From the perspective of near real-time green tide monitoring, high-resolution imagery combined with deep learning is an effective approach. The findings pave the way for monitoring and tracking green tides in coastal zones, as well as assisting in the prevention and control of green tide disasters.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Key Program of Shandong Natural Science Foundation

Fundamental Research Projects of Science and Technology Innovation and development Plan in Yantai City

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3