Deep Semantic-Preserving Reconstruction Hashing for Unsupervised Cross-Modal Retrieval

Author:

Cheng Shuli,Wang LiejunORCID,Du AnyuORCID

Abstract

Deep hashing is the mainstream algorithm for large-scale cross-modal retrieval due to its high retrieval speed and low storage capacity, but the problem of reconstruction of modal semantic information is still very challenging. In order to further solve the problem of unsupervised cross-modal retrieval semantic reconstruction, we propose a novel deep semantic-preserving reconstruction hashing (DSPRH). The algorithm combines spatial and channel semantic information, and mines modal semantic information based on adaptive self-encoding and joint semantic reconstruction loss. The main contributions are as follows: (1) We introduce a new spatial pooling network module based on tensor regular-polymorphic decomposition theory to generate rank-1 tensor to capture high-order context semantics, which can assist the backbone network to capture important contextual modal semantic information. (2) Based on optimization perspective, we use global covariance pooling to capture channel semantic information and accelerate network convergence. In feature reconstruction layer, we use two bottlenecks auto-encoding to achieve visual-text modal interaction. (3) In metric learning, we design a new loss function to optimize model parameters, which can preserve the correlation between image modalities and text modalities. The DSPRH algorithm is tested on MIRFlickr-25K and NUS-WIDE. The experimental results show that DSPRH has achieved better performance on retrieval tasks.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Similarity Graph-correlation Reconstruction Network for unsupervised cross-modal hashing;Expert Systems with Applications;2024-03

2. Deep internally connected transformer hashing for image retrieval;Knowledge-Based Systems;2023-11

3. Discriminant Cross modal Hash Retrieval Algorithm with Multilevel Semantics;2023 15th International Conference on Advanced Computational Intelligence (ICACI);2023-05-06

4. Graph Rebasing and Joint Similarity Reconstruction for Cross-Modal Hash Retrieval;Machine Learning and Knowledge Discovery in Databases: Research Track;2023

5. Multiple instance relation graph reasoning for cross-modal hash retrieval;Knowledge-Based Systems;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3