Canine Olfactory Detection of a Non-Systemic Phytobacterial Citrus Pathogen of International Quarantine Significance

Author:

Gottwald TimothyORCID,Poole GavinORCID,Taylor EarlORCID,Luo WeiqiORCID,Posny DrewORCID,Adkins ScottORCID,Schneider WilliamORCID,McRoberts NeilORCID

Abstract

For millennia humans have benefitted from application of the acute canine sense of smell to hunt, track and find targets of importance. In this report, canines were evaluated for their ability to detect the severe exotic phytobacterial arboreal pathogen Xanthomonas citri pv. citri (Xcc), which is the causal agent of Asiatic citrus canker (Acc). Since Xcc causes only local lesions, infections are non-systemic, limiting the use of serological and molecular diagnostic tools for field-level detection. This necessitates reliance on human visual surveys for Acc symptoms, which is highly inefficient at low disease incidence, and thus for early detection. In simulated orchards the overall combined performance metrics for a pair of canines were 0.9856, 0.9974, 0.9257 and 0.9970, for sensitivity, specificity, precision, and accuracy, respectively, with 1–2 s/tree detection time. Detection of trace Xcc infections on commercial packinghouse fruit resulted in 0.7313, 0.9947, 0.8750, and 0.9821 for the same performance metrics across a range of cartons with 0–10% Xcc-infected fruit despite the noisy, hot and potentially distracting environment. In orchards, the sensitivity of canines increased with lesion incidence, whereas the specificity and overall accuracy was >0.99 across all incidence levels; i.e., false positive rates were uniformly low. Canines also alerted to a range of 1–12-week-old infections with equal accuracy. When trained to either Xcc-infected trees or Xcc axenic cultures, canines inherently detected the homologous and heterologous targets, suggesting they can detect Xcc directly rather than only volatiles produced by the host following infection. Canines were able to detect the Xcc scent signature at very low concentrations (10,000× less than 1 bacterial cell per sample), which implies that the scent signature is composed of bacterial cell volatile organic compound constituents or exudates that occur at concentrations many fold that of the bacterial cells. The results imply that canines can be trained as viable early detectors of Xcc and deployed across citrus orchards, packinghouses, and nurseries.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference50 articles.

1. Importance of early season copper sprays for protection of hamlin orange fruit against citrus canker infection and premature fruit drop;Graham,2016

2. Post-hurricane Analysis of Citrus Canker Spread and Progress towards the Development of a Predictive Model to Estimate Disease Spread Due to Catastrophic Weather Events

3. Post-hurricane Analysis of Citrus Canker II: Predictive Model Estimation of Disease Spread and Area Potentially Impacted by Various Eradication Protocols Following Catastrophic Weather Events

4. Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker infected citrus trees;Bock;Plant Dis.,2005

5. An epidemiological analysis of the spread of citrus canker in urban Miami, Florida, and synergistic interaction with the Asian citrus leaf miner;Gottwald;Fruits,1997

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3