Euclidean Graphs as Crack Pattern Descriptors for Automated Crack Analysis in Digital Images

Author:

Strini AlbertoORCID,Schiavi LucaORCID

Abstract

Typical crack detection processes in digital images produce a binary-segmented image that constitutes the basis for all of the following analyses. Binary images are, however, an unsatisfactory data format for advanced crack analysis algorithms due to their sparse nature and lack of significant data structuring. Therefore, this work instead proposes a new approach based on Euclidean graphs as functional crack pattern descriptors for all post-detection analyses. Conveying both geometrical and topological information in an integrated representation, Euclidean graphs are an ideal structure for efficient crack path description, as they precisely locate the cracks on the original image and capture salient crack skeleton features. Several Euclidean graph-based algorithms for autonomous crack refining, correlation and analysis are described, with significant advantages in both their capabilities and implementation convenience over the traditional, binary image-based approach. Moreover, Euclidean graphs allow the autonomous selection of specific cracks or crack parts based on objective criteria. Well-known performance metrics, namely precision, recall, intersection over union and F1-score, have been adapted for use with Euclidean graphs. The automated generation of Euclidean graphs from binary-segmented images is also reported, enabling the application of this technique to most existing detection methods (e.g., threshold-based or neural network-based) for cracks and other curvilinear features in digital images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3