Fall Prediction Based on Instrumented Measures of Gait and Turning in Daily Life in People with Multiple Sclerosis

Author:

Arpan Ishu,Shah Vrutangkumar V.ORCID,McNames James,Harker Graham,Carlson-Kuhta PatriciaORCID,Spain Rebecca,El-Gohary Mahmoud,Mancini Martina,Horak Fay B.ORCID

Abstract

This study investigates the potential of passive monitoring of gait and turning in daily life in people with multiple sclerosis (PwMS) to identify those at future risk of falls. Seven days of passive monitoring of gait and turning were carried out in a pilot study of 26 PwMS in home settings using wearable inertial sensors. The retrospective fall history was collected at the baseline. After gait and turning data collection in daily life, PwMS were followed biweekly for a year and were classified as fallers if they experienced >1 fall. The ability of short-term passive monitoring of gait and turning, as well as retrospective fall history to predict future falls were compared using receiver operator curves and regression analysis. The history of retrospective falls was not identified as a significant predictor of future falls in this cohort (AUC = 0.62, p = 0.32). Among quantitative monitoring measures of gait and turning, the pitch at toe-off was the best predictor of falls (AUC = 0.86, p < 0.01). Fallers had a smaller pitch of their feet at toe-off, reflecting less plantarflexion during the push-off phase of walking, which can impact forward propulsion and swing initiation and can result in poor foot clearance and an increased metabolic cost of walking. In conclusion, our cohort of PwMS showed that objective monitoring of gait and turning in daily life can identify those at future risk of falls, and the pitch at toe-off was the single most influential predictor of future falls. Therefore, interventions aimed at improving the strength of plantarflexion muscles, range of motion, and increased proprioceptive input may benefit PwMS at future fall risk.

Funder

National Institute of Health

United States Department of Defense

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3