Sensitivity Analysis of Tool Wear in Drilling of Titanium Aluminides

Author:

Beranoagirre Aitor,Urbikain Gorka,Marticorena Raúl,Bustillo Andrés,López de Lacalle Luis

Abstract

In the aerospace industry, a large number of holes need to be drilled to mechanically connect the components of aircraft engines. The working conditions for such components demand a good response of their mechanical properties at high temperatures. The new gamma TiAl are in the transition between the 2nd and 3rd generation, and several applications are proposed for that sector. Thus, NASA is proposing the use of the alloys in the Revolutionary Turbine Accelerator/Turbine-Based Combined Cycle (RTA/TBCC) Program for the next-generation launch vehicle, with gamma TiAl as a potential compressor and structural material. However, the information and datasets available regarding cutting performance in titanium aluminides are relatively scarce. So, a considerable part of the current research efforts in this field is dedicated to process optimization of cutting parameters and tool geometries. The present work is framed in the study of wear when machining holes in these difficult-to-cut alloys. In particular, the work presents the results from drilling tests on three types of gamma TiAl alloys, extruded MoCuSi, ingot MoCuSi, and TNB type, to define an optimal set of cutting parameters. Maintaining uniform, gradual wear is key to avoiding tool breakage and enabling good hole dimensional accuracy. So, this paper proposes a model based on ANOVA analysis to identify the relationships between cutting conditions and resulting wear and estimate tool life. The best cutting parameters were found at vc = 10–15 m/min and fn = 0.025 mm/rev.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3