Electrocatalytic Enhancement of CO Methanation at the Metal–Electrolyte Interface Studied Using In Situ X-ray Photoelectron Spectroscopy

Author:

Thurner Christoph W.1ORCID,Haug Leander1ORCID,Winkler Daniel1ORCID,Griesser Christoph1,Leitner Matthias1,Moser Toni1ORCID,Werner Daniel1,Thaler Marco1ORCID,Scheibel Lucas A.1,Götsch Thomas2,Carbonio Emilia23,Kunze-Liebhäuser Julia1,Portenkirchner Engelbert1ORCID,Penner Simon1ORCID,Klötzer Bernhard1ORCID

Affiliation:

1. Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria

2. Fritz-Haber Institute of the Max-Planck Society, Department of Inorganic Chemistry, Faradayweg 4–6, 14195 Berlin, Germany

3. Catalysis for Energy, Energy Materials In Situ Laboratory (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, BESSY II, Albert-Einstein-Straße 15, 12489 Berlin, Germany

Abstract

For the direct reduction of CO2 and H2O in solid oxide electrolysis cells (SOECs) with cermet electrodes toward methane, a fundamental understanding of the role of elemental carbon as a key intermediate within the reaction pathway is of eminent interest. The present synchrotron-based in situ near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) study shows that alloying of Ni/yttria-stabilized-zirconia (YSZ) cermet electrodes with Cu can be used to control the electrochemical accumulation of interfacial carbon and to optimize its reactivity toward CO2. In the presence of syngas, sufficiently high cathodic potentials induce excess methane on the studied Ni/yttria-stabilized-zirconia (YSZ)-, NiCu/YSZ- and Pt/gadolinium-doped-ceria (GDC) cermet systems. The hydrogenation of carbon, resulting from CO activation at the triple-phase boundary of Pt/GDC, is most efficient.

Funder

research platform “Materials- and Nanoscience”

special PhD program “Reactivity and Catalysis” at the University of Innsbruck

Austrian Research Promotion Agency

Austrian Science Fund

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3