Smart Self-Healing Capability of Asphalt Material Using Bionic Microvascular Containing Oily Rejuvenator

Author:

Yang Peng,Wang Li-Qing,Gao Xu,Wang Sai,Su Jun-Feng

Abstract

It has become one of the research directions of intelligent materials for self-healing asphalt pavements to use a bionic microvascular containing oily rejuvenator. The rejuvenator in a microvascular can carry out the healing of asphalt micro-cracks, thus reducing the damage to and prolonging the life of asphalt pavement. The aim of this work was to investigate the smart self-healing capability of an asphalt/microvascular material through its microstructure and mechanical properties. Microstructure observation indicated no interface separation between the microvasculars and bitumen matrix. Micro-CT images showed that microvasculars dispersed in asphalt samples without accumulation or tangles. The phenomenon of microcracks healing without intervention was observed, which proved that the fractured asphalt sample carried out the self-healing process with the help of rejuvenator diffusing out from the broken microvasculars. The self-healing efficiency of asphalt samples was also evaluated through a tensile test considering the factors of microvasculars content, healing time and healing temperature. It was found that the tensile strength of the asphalt samples was greatly enhanced by the addition of microvasculars under a set test condition. Self-healing efficiency was enhanced with more broken microvasculars in the rupture interface of the asphalt sample. During two self-healing cycles, the self-healing efficiency of the asphalt sample with three microvascular per 1 cm2 of a broken interface were able to reach 80% and 86%. This proves that microvasculars containing rejuvenator play a practical role in the self-healing process of asphalt. With an increase in temperature from 0 to 30 °C, the self-healing capability of the asphalt samples increased dramatically. An increase in time increased the self-healing capability of the bitumen samples. At last, a preliminary mathematical model also deduced that the self-healing efficiency was determined by the individual healing steps, including release, penetration and diffusion of the rejuvenator agent.

Funder

Tianjin Municipal Science and Technology Commission

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3