Analysis of Four Types of Anchorage Devices for Prestressed Glulam Beam and Experimental Research

Author:

Li MingfeiORCID,Wu MingtaoORCID,Guo NanORCID,Mei LidanORCID,Zhao Yan

Abstract

An anchorage device is an integral part of the prestressed Glulam beams. Therefore, its rationality and practicability have significant effects on the mechanical performance of the prestressed beams. To investigate the impact of the anchorage devices on the bearing capacity and stiffness of the prestressed beams, this paper compared and analyzed four kinds of anchors in detail through the finite element software. The results showed that when the initial mid-span deflection was 5 mm, 10 mm, and 15 mm, the bearing capacity of prestressed beams with four anchorage devices was 80.37–177.24%, 93.56–182.51%, and 95.62–194.60% higher than that of ordinary Glulam beam, respectively. When the initial mid-span top prestresses were 1 MPa, 1.5 MPa, and 2 MPa, the bearing capacity of prestressed beams with four anchorage devices was 101.71–172.57%, 105.85–175.88%, and 109.64–180.87% higher than that of ordinary Glulam beam, respectively. In addition, based on the simulation results, the prestressed beam with the external anchorage had the highest bearing capacity and stiffness. The deformation capacity of the beam with boot anchorage was the largest. The stress distribution of the beam installed under beam anchorage was the most uniform, and the beam with slotted anchorage was easy to cause stress concentration at the notch. Finally, based on the outstanding performance of the external anchorage, it was selected to carry out one experiment, and the experimental result showed that the simulation could predict the damage model and load–deflection relationship of the prestressed beams well.

Funder

Natural Science Foundation of Heilongjiang Province

Natural Science Foundation of Fujian Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Structural types and advantages of modern wood structure buildings;Int. Wood Ind.,2020

2. Probabilistic representation of the duration of load effects in timber structures;Jochen;Eng. Struct.,2011

3. The Application of the Wooden Structure to the Canadian School Buildings;Haiyan;New Archit.,2020

4. American medium and high-rise wood structure buildings;Yue;Constr. Sci. Technol.,2019

5. Modern Wood Structure;Chengmou,2007

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3