Canopy Light Utilization and Yield of Rice under Rain-Catching and Controlled Irrigation

Author:

Lu Hongfei,Qi Xuebin,Guo Xiangping,Towa Jacob,Zhen Bo,Qiao Dongmei,Wang Zhenchang,Yang Bo,Han Yang

Abstract

In the middle and lower reaches of the Yangtze River, the rainfall is greater in summer. The technology of rain catching and controlled irrigation of rice help to save water by raising the water depth of the field after rain while the soil water content during the rest period is maintained at 70–100% of field capacity. The objectives of this study were to evaluate rice growth, canopy light utilization, and yield of rice under different rain-catching and controlled irrigation modes (T1: light drought and low storage, T2: light drought and high storage), and to find the optimal storage depth after rain for rice. Measurements included the rice plant height, tiller number, high tiller growth, leaf angle, canopy interception rate, and yield shape. The plot experiment was conducted in 2012 and 2013 using Nanjing 44 (Oryza sativa L.) as the test material. The results showed that T1 treatment improved the height of rice plants and the number of effective tillers in the late growth stage. The number of high tillers had a great influence on the total leaf dry quality; compared with conventional irrigation (CK), the number of high tillers increased by 11.36% and 7.87% in T1 and T2, respectively; the canopy interception rate of T1 above 0 cm was higher than that in T2 and CK; and the leaf area index (LAI) was closely related to the 0–40 cm of canopy light distribution. The number of grains per panicle in T1 was lower than in CK and T2; however, the number of grains in T1 was less, and the 1000 grain weight was higher. On the 63 days and 83 days after transplanting in 2012 and 78 days after transplanting in 2013, the first, second, and third leaf angles of T1 were larger. Rain-catching and controlled irrigation can increase the dry weight and shoot dry weight of rice, and light drought and low storage (T1) conditions are good for maintaining a high yield because of more tiller number, more grains per panicle and reasonable light distribution.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3