Identifying the Sensitivity of Ensemble Streamflow Prediction by Artificial Intelligence

Author:

Chiang Yen-Ming,Hao Ruo-Nan,Zhang Jian-Quan,Lin Ying-TienORCID,Tsai Wen-Ping

Abstract

Sustainable water resources management is facing a rigorous challenge due to global climate change. Nowadays, improving streamflow predictions based on uneven precipitation is an important task. The main purpose of this study is to integrate the ensemble technique concept into artificial neural networks for reducing model uncertainty in hourly streamflow predictions. The ensemble streamflow predictions are built following two steps: (1) Generating the ensemble members through disturbance of initial weights, data resampling, and alteration of model structure; (2) consolidating the model outputs through the arithmetic average, stacking, and Bayesian model average. This study investigates various ensemble strategies on two study sites, where the watershed size and hydrological conditions are different. The results help to realize whether the ensemble methods are sensitive to hydrological or physiographical conditions. Additionally, the applicability and availability of the ensemble strategies can be easily evaluated in this study. Among various ensemble strategies, the best ESP is produced by the combination of boosting (data resampling) and Bayesian model average. The results demonstrate that the ensemble neural networks greatly improved the accuracy of streamflow predictions as compared to a single neural network, and the improvement made by the ensemble neural network is about 19–37% and 20–30% in Longquan Creek and Jinhua River watersheds, respectively, for 1–3 h ahead streamflow prediction. Moreover, the results obtained from different ensemble strategies are quite consistent in both watersheds, indicating that the ensemble strategies are insensitive to hydrological and physiographical factors. Finally, the output intervals of ensemble streamflow prediction may also reflect the possible peak flow, which is valuable information for flood prevention.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3