Impacts of Climate and Land Cover on Soil Organic Carbon in the Eastern Qilian Mountains, China

Author:

Zhou Junju,Xue DongxiangORCID,Lei Li,Wang Lanying,Zhong Guoshuang,Liu Chunfang,Xiang Juan,Huang Meihua,Feng Wei,Li Qiaoqiao,Zhao Yaru,Zhu Guofeng

Abstract

Soil, as the largest organic carbon pool of terrestrial ecosystem, plays a significant role in regulating the global carbon cycle, atmospheric carbon dioxide (CO2) levels, and global climate change. It is of great significance to scientifically understand the change rule and influence mechanism of soil organic carbon (SOC) to further understand the "source–sink" transformation of SOC and its influence on climate change. In this paper, the spatiotemporal distribution characteristics and influencing mechanism of SOC were analyzed by means of field investigation and laboratory analysis and the measured data in the Eastern Qilian Mountains. The results showed that the average SOC content of 0–50 cm was 35.74 ± 4.15 g/kg and the range of coefficients of variation (CV) between 48.84% and 75.84%, which suggested that the SOC content exhibited moderate heterogeneity at each soil layer of the Eastern Qilian Mountains. In four land cover types, the SOC content of forestland was the highest, followed by alpine meadow, grassland, and wilderness, which presented surface enrichment, and there was a decreasing trend with the soil depth. From the perspective of seasonal dynamics, there was a uniform pattern of SOC content in different land cover types, shown to be the highest in winter, followed by autumn, spring, and summer, and with the biggest difference between winter and summer appearing in the surface layer. At the same time, our study suggested that the SOC content of different land cover types was closely related to aboveground biomass and negatively related to both the mean monthly temperature and the mean monthly precipitation. Therefore, the distribution and variation of SOC was the result of a combination of climate, vegetation, and other factors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3