Unit-Based Emissions Inventory for Electric Power Systems in Kuwait: Current Status and Future Predictions

Author:

Alhajeri Nawaf S.,Al-Fadhli Fahad M.,Aly Ahmed Z.

Abstract

Obtaining accurate estimates of emissions from electric power systems is essential for predicting air quality and evaluating the effectiveness of any future control technologies. This paper aimed to develop unit-based emissions inventories for electric power systems in Kuwait using different parameters, including fuel specifications and consumption, combustion technology and its efficiency, unit capacity, and boiler type. The study also estimated the future emissions of NOx, SO2, CO, CO2, and PM10 up to the year 2030 using a multivariate regression model in addition to predicting future energy demand. The results showed that annual (2010–2015) emissions of all air pollutants, excluding SO2 and PM10, increased over the study period. CO had the greatest increase of 41.9%, whereas SO2 levels decreased the most by 13% over the 2010 levels, due to the replacement of heavy fuel oil. Energy consumption in 2015 stood at approximately 86 PJ, with natural gas, gas oil, crude oil, and heavy fuel oil making up 51.2%, 10.7%, 3.1%, and 35%, respectively. Energy demand was projected to grow at an annualized rate of 2.8% by 2030 compared to 2015 levels. The required installed capacity to meet this demand was estimated to be approximately 21.8 GW (a 34% increase in capacity compared to 2015 levels). The projected emission rates showed that, of the five air pollutants, SO2 and PM10 are expected to decrease by 2030 by 34% and 11%, respectively. However, peak monthly emissions of SO2 would still only be 14% lower compared to the 2015 monthly average. In contrast, emission levels are projected to increase by 34.3%, 54.8%, and 71.8% for CO2, NOx, and CO, respectively, by 2030 compared to 2015 levels. Accordingly, a more ambitious target of renewables penetration needs to be adopted to reduce emission levels going forward.

Funder

Kuwait Foundation for the Advancement of Sciences

Kuwait University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3