Automatic Segmentation of Type A Aortic Dissection on Computed Tomography Images Using Deep Learning Approach

Author:

Guo Xiaoya1,Liu Tianshu1,Yang Yi1,Dai Jianxin1,Wang Liang2ORCID,Tang Dalin23,Sun Haoliang4ORCID

Affiliation:

1. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China

3. Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA

4. Department of Cardiovascular Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

Abstract

Purpose: Type A aortic dissection (TAAD) is a life-threatening aortic disease. The tear involves the ascending aorta and progresses into the separation of the layers of the aortic wall and the occurrence of a false lumen. Accurate segmentation of TAAD could provide assistance for disease assessment and guidance for clinical treatment. Methods: This study applied nnU-Net, a state-of-the-art biomedical segmentation network architecture, to segment contrast-enhanced CT images and quantify the morphological features for TAAD. CT datasets were acquired from 24 patients with TAAD. Manual segmentation and annotation of the CT images was used as the ground-truth. Two-dimensional (2D) nnU-Net and three-dimensional (3D) nnU-Net architectures with Dice- and cross entropy-based loss functions were utilized to segment the true lumen (TL), false lumen (FL), and intimal flap on the images. Four-fold cross validation was performed to evaluate the performance of the two nnU-Net architectures. Six metrics, including accuracy, precision, recall, Intersection of Union, Dice similarity coefficient (DSC), and Hausdorff distance, were calculated to evaluate the performance of the 2D and 3D nnU-Net algorithms in TAAD datasets. Aortic morphological features from both 2D and 3D nnU-Net algorithms were quantified based on the segmented results and compared. Results: Overall, 3D nnU-Net architectures had better performance in TAAD CT datasets, with TL and FL segmentation accuracy up to 99.9%. The DSCs of TLs and FLs based on the 3D nnU-Net were 88.42% and 87.10%. For the aortic TL and FL diameters, the FL area calculated from the segmentation results of the 3D nnU-Net architecture had smaller relative errors (3.89–6.80%), compared to the 2D nnU-Net architecture (relative errors: 4.35–9.48%). Conclusions: The nnU-Net architectures may serve as a basis for automatic segmentation and quantification of TAAD, which could aid in rapid diagnosis, surgical planning, and subsequent biomechanical simulation of the aorta.

Funder

National Natural Sciences Foundation of China

Foundation of Jiangsu Provincial Double Innovation Doctor Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3