An Efficient and Effective Framework for Intestinal Parasite Egg Detection Using YOLOv5

Author:

Kumar Satish1ORCID,Arif Tasleem1,Ahamad Gulfam2,Chaudhary Anis Ahmad3ORCID,Khan Salahuddin4ORCID,Ali Mohamed A. M.35

Affiliation:

1. Department of Information Technology, BGSB University, Rajouri 185131, India

2. Department of Computer Sciences, Baba Ghulam Shah Badshah University, Rajouri 185131, India

3. Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia

4. Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia

5. Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

Abstract

Intestinal parasitic infections pose a grave threat to human health, particularly in tropical and subtropical regions. The traditional manual microscopy system of intestinal parasite detection remains the gold standard procedure for diagnosing parasite cysts or eggs. This approach is costly, time-consuming (30 min per sample), highly tedious, and requires a specialist. However, computer vision, based on deep learning, has made great strides in recent years. Despite the significant advances in deep convolutional neural network-based architectures, little research has been conducted to explore these techniques’ potential in parasitology, specifically for intestinal parasites. This research presents a novel proposal for state-of-the-art transfer learning architecture for the detection and classification of intestinal parasite eggs from images. The ultimate goal is to ensure prompt treatment for patients while also alleviating the burden on experts. Our approach comprised two main stages: image pre-processing and augmentation in the first stage, and YOLOv5 algorithms for detection and classification in the second stage, followed by performance comparison based on different parameters. Remarkably, our algorithms achieved a mean average precision of approximately 97% and a detection time of only 8.5 ms per sample for a dataset of 5393 intestinal parasite images. This innovative approach holds tremendous potential to form a solid theoretical basis for real-time detection and classification in routine clinical examinations, addressing the increasing demand and accelerating the diagnostic process. Our research contributes to the development of cutting-edge technologies for the efficient and accurate detection of intestinal parasite eggs, advancing the field of medical imaging and diagnosis.

Funder

Ministry of Education in Saudi Arabia

Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3